Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sung Kwon Kang,*
 Kwanghee Koh Park, Wan Cheol Kim and Sun-Hyuk Kim

Department of Chemistry, Chungnam National University, Daejeon 305-764, South Korea

Correspondence e-mail: skkang@cnu.ac.kr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.084$
$w R$ factor $=0.249$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Dimethyl-3,7-diphenylbenzo[1,2-b:4,5-b']difuran

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{2}$, the benzodifuran ring system is planar. The two phenyl rings make dihedral angles of 37.4 (2) and $40.8(2)^{\circ}$ with the benzodifuran ring system.

Received 1 June 2004 Accepted 9 June 2004 Online 19 June 2004

Comment

The benzo[b]furan nucleus is present in numerous examples of natural products and the chemistry of benzo[b]furan compounds has been extensively studied (Cagniant \& Cagniant, 1975). However, benzodifuran derivatives, which have one more furan ring fused to the benzene ring of the benzo[b]furan nucleus, have received limited attention, although they are known to exhibit interesting chemical and physiological properties (Murthy et al., 2002; Rene et al., 1977; Takahashi et al., 1993; Chambers et al., 2001).

benzo[1,2-b:5,4-b] difuran
(I)

(III)

benzo[1,2-b:4,5-b]difuran
(II)

(IV)

Several structural isomers of the benzodifuran system are possible and two of them are shown above [(I): benzo[1,2$b: 5,4-b^{\prime}$]difuran; (II): benzo[1,2-b:4,5-b']difuran]. Few benzodifuran compounds have been studied by X-ray diffraction methods (Takahashi \& Kobayashi, 2000; Plenkiewicz et al., 2000; Harding et al., 1986). The crystal structure of 6 -acetylbenzo[1,2-b:5,4-b']difuran, (III), has been reported and the ring system is almost planar (Bideau et al., 1978). With our continued interest in the syntheses and structures of benzo[b]furan (Park et al., 2000, 2001) and benzodifuran derivatives (Park, Lim et al., 2002; Park \& Lim, 2002; Park et al., 2004), we determined the crystal structure of the title compound, (IV), which has a benzodifuran nucleus isomeric with (III).

The benzodifuran ring system in (IV) (Fig. 1) is essentially planar. The dihedral angles between the benzene ring and the furan rings are $0.6(4)$ and $0.8(4)^{\circ}$. These angles are similar to that of a furan-fused TCNQ compound (2.1 ${ }^{\circ}$; Takahashi \& Kobayashi, 2000). The two phenyl rings make dihedral angles of 37.4 (2) and 40.8 (2) ${ }^{\circ}$ with the benzodifuran ring system, due to steric hindrance with the methyl groups on the furan

Figure 1
The molecular structure of (IV), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2
Packing diagram for (IV).
rings. Table 1 lists selected parameters for the fused ring system. The $\mathrm{C}-\mathrm{O}$ bond distances $[1.372$ (6)-1.382 (7) \AA] are within the normal range. The $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 6-\mathrm{C} 7$ bond
distances are 1.363 (8) and 1.340 (8) \AA, respectively, and these are much shorter than the other $\mathrm{C}-\mathrm{C}$ distances $[1.409$ (9)1.451 (7) \AA] in furan rings. Clearly, these bonds have doublebond character.

Experimental

The title compound, (IV), was prepared from p-dimethoxybenzene utilizing photocyclization and photo-Fries rearrangement reactions (Park et al., 2004). Crystals of (IV) suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution. The compound was characterized by NMR and elemental analysis data (Park et al., 2004), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 313 \mathrm{~K}$): $\delta 2.54$ ($6 \mathrm{H}, s$), 7.37 $(2 \mathrm{H}, t, J=7 \mathrm{~Hz}), 7.49(4 \mathrm{H}, t, J=8 \mathrm{~Hz}), 7.54(4 \mathrm{H}, d, J=8 \mathrm{~Hz}), 7.55(2 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 313 \mathrm{~K}$): $\delta 13.12,100.01,117.03,126.19,126.91$, 128.73, 128.86, 133.05, 151.21, 151.68. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{2}$: C 85.18 , H 5.36%; found: C 85.39 , H 5.61%.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=338.38$
Triclinic, $P \overline{1}$
$a=9.6867$ (19) \AA
$b=9.7435(19) \AA$
$c=10.723(2) \AA$
$\alpha=116.90(3)^{\circ}$
$\beta=100.35(3)^{\circ}$
$\gamma=99.36(3)^{\circ}$
$V=852.8(4) \AA^{3}$
$Z=2$
$D_{x}=1.318 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 23
reflections
$\theta=8.3-15.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.26 \times 0.20 \times 0.17 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: none
3278 measured reflections
3080 independent reflections
1234 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$

$$
\begin{aligned}
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 11 \\
& k=-11 \rightarrow 11 \\
& l=-12 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 400 \text { reflections } \\
& \text { intensity decay: } 2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.085$
H -atom parameters constrained
$w R\left(F^{2}\right)=0.249$
$S=0.98$
3080 reflections
235 parameters

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-C9	$1.382(7)$	O5-C6	$1.377(7)$
O1-C2	$1.387(7)$	C6-C7	$1.340(8)$
C2-C3	$1.363(8)$	C7-C12	$1.451(7)$
C2-C13	$1.485(8)$	C8-C9	$1.361(8)$
C3-C10	$1.445(8)$	C8-C12	$1.404(8)$
C4-C11	$1.362(8)$	C9-C10	$1.409(9)$
C4-C10	$1.402(8)$	C11-C12	$1.419(8)$
O5-C11	$1.372(6)$		
C9-O1-C2	$106.6(5)$	C8-C9-C10	$126.1(6)$
C3-C2-O1	$111.5(5)$	O1-C9-C10	$109.5(5)$
C2-C3-C10	$106.2(5)$	C4-C10-C9	$119.0(5)$
C11-C4-C10	$115.4(5)$	C4-C10-C3	$134.8(6)$
C11-O5-C6	$106.8(4)$	C4-C11-C12	$125.4(5)$
C7-C6-O5	$112.0(5)$	O5-C11-C12	$109.4(5)$
C6-C7-C12	$106.8(5)$	C8-C12-C11	$119.1(5)$
C9-C8-C12	$115.0(5)$	C11-C12-C7	$105.0(5)$
C8-C9-O1	$124.4(5)$		

H atoms were positioned geometrically and constrained to ride on their attached atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\left[1.5 U_{\text {eq }}(\mathrm{C})\right.$ for methyl H atoms].

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by grant No. R05-2003-000-104590 from the Basic Research Program of the Korea Science and Engineering Foundation and by a grant from Chungnam National University.

References

Bideau, J. P., Bravic, G. \& Breton, M. (1978). Cryst. Struct. Commun. 7, 629631.

Cagniant, P. \& Cagniant, D. (1975). Adv. Heterocycl. Chem. 18, 337-486.
Chambers, J. J., Kurrasch-Orbaugh, D. M., Parker, M. A. \& Nichols, D. E. (2001). J. Med. Chem. 44, 1003-1010.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harding, M. M., Sutcliffe, L. H. \& Whitehouse, A. D. (1986). Acta Cryst. C42, 1537-1539.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Murthy, K. S., Rajitha, B., Rao, M. K., Komuraiah, T. R. \& Reddy, S. M. (2002). Heterocycl. Commun. 8, 179-186.
Park, K. K., Han, I. K. \& Park, J. W. (2001). J. Org. Chem. 66, 68006802.

Park, K. K., Kim, S.-H. \& Park, J. W. (2004). J. Photochem. Photobiol. A, 163, 241-247.
Park, K. K. \& Lim, H. (2002). Heterocycles, 57, 657-664.
Park, K. K., Lim, H., Kim, S.-H. \& Bae, D. H. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 310-314.
Park, K. K., Seo, H., Kim. J.-G. \& Suh, I.-H. (2000). Tetrahedron Lett. 41, 13931396.

Plenkiewicz, H., Urbanczyk-Lipkowska, Z. \& Dmowski, W. (2000). J. Fluorine Chem. 103, 95-97.
Rene, L., Buisson, J. P., Royer, R. \& Averbeck, D. (1977). Eur. J. Med. Chem. Chim. Ther. 12, 31-34.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Takahashi, K. \& Kobayashi, K. (2000). J. Org. Chem. 65, 2577-2579.
Takahashi, T., Oota, M., Oonuma, T., Sakon, H. \& Yamaguchi, T. (1993). Jpn Kokai Tokkyo Koho Jpn Patent 05109485.

